Improper Integrals

Example

1. Calculate $\int_{-\infty}^{\infty} e^{-|x|} d x$.

Solution: We split it up at 0 to get

$$
\begin{gathered}
\int_{-\infty}^{\infty} e^{-|x|} d x=\int_{-\infty}^{0} e^{-|x|} d x+\int_{0}^{\infty} e^{-|x|} d x \\
=\lim _{t \rightarrow-\infty} \int_{t}^{0} e^{x} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-x} d x=\left.\lim _{t \rightarrow-\infty} e^{x}\right|_{t} ^{0}+\lim _{t \rightarrow \infty}\left(-e^{-x}\right) \mid 0^{t} \\
=1-0+0-(-1)=2 .
\end{gathered}
$$

Problems

2. True FALSE When calculating $\int_{-\infty}^{\infty} f(x) d x$, the final result depends on the a we choose to split it up as $\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$.

Solution: The answer does not depend on a.
3. TRUE False Since the function $f(x)=x$ is odd, we know that $\int_{-n}^{n} f(x) d x=0$ for all integers n.

Solution: Since it is odd, we can think of the area left of 0 and the area right of 0 as canceling.
4. True FALSE Since the function $f(x)=x$ is odd, we know that $\int_{-\infty}^{\infty} f(x) d x=0$ for all integers n.

Solution: When we split up the integral, we get $\int_{0}^{\infty} x d x$ and $\int_{-\infty}^{0} x d x$ which give ∞ and $-\infty$ respectively. Thus, the integral diverges.
5. Compute $\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$.

Solution: We split it up to get

$$
\begin{gathered}
\int_{-\infty}^{\infty} 2 x e^{-x^{2}}=\lim _{t \rightarrow-\infty} \int_{t}^{0} 2 x e^{-x^{2}} d x+\lim _{t \rightarrow \infty} \int_{0}^{t} 2 x e^{-x^{2}} d x=\lim _{t \rightarrow-\infty} \int_{t^{2}}^{0} e^{-u} d u+\lim _{t \rightarrow \infty} \int_{0}^{t^{2}} e^{-u} d u \\
=\lim _{t \rightarrow-\infty}-e^{0}+e^{-t^{2}}+\lim _{t \rightarrow \infty}-e^{-t^{2}}+e^{0}=-1+1=0
\end{gathered}
$$

Histograms and Probability

Problems

6. Draw a histogram with bins $[0.5,2.5],[2.5,4.5],[4.5,6.5],[6.5,8.5],[8.5,10.5]$.
7. Calculate the probability that randomly choosing a value between 1 and 10 gives 7 or 8 .

Solution: Probability is good cases/all cases so $\frac{2}{10}$.
8. Calculate the probability of getting a 7 or 8 using class data.
9. Calculate the probability that randomly choosing a value between 1 and 10 gives an even number.

Solution: Probability is good cases/all cases so $\frac{5}{10}$.
10. Calculate the probability of getting an even number using class data.

